

Abstract—This project aimed to create a stable flight system
for a model airplane using a microcontroller, an accelerometer
and a gyroscope. The method of stable flight is a PID
controller. The hardware was designed to be light-weight and
flight ready. The sensors were tested using various validation
methods. The robot was then test flown to gather data to create
a classifier for the PID constants.

I. INTRODUCTION

UAVs (unmanned aerial vehicles) are gaining
traction in the use of research, transport and
combat. This project aimed to develop an UAV
system for CU Air, the Cornell University
Autonomous flight team. We had initially
planned on creating a system that could
autonomously fly to set GPS coordinates, but
due to time constraints, we significantly limited
the scope of our project.

Thus, this project focused on the stable flight
aspect of autonomous flight using a PID
(proportional, integral and derivative) controller.
We paired this system with a 6-foot wingspan
hobby airplane for testing purposes.

Figure 0: Plane robot before a flight.

II. HARDWARE DESIGN
A large portion of our robot was based on

hardware design. Because the system we used
had to be light weight and sturdy, we went through

several hardware designs before settling on our
final design. It is worth noting that all the designs
centered around the LPC2378 microcontroller[1]
by NXP which was mounted to an MCB2300[2]
evaluation board from Keil (See Figure 1). In this
section we will discuss our initial designs, why
they were not used and the final design.

A. Initial Design
Basically, two designs were initially considered

and partially tested before they were deemed unfit
for our purposes. These two designs will be
referred to as the first design and the second
design.

1. First Design
Our first design involved using the USB port on

the evaluation board to communicate with the
ground via a USB to WiFi device server[3]. This
device server converts USB 2.0 signals into
802.11b or g WiFi. From there a router on the
ground relays the signal to a computer. To allow
the device server to be used in the air, it was
modified with a high gain antenna and a 5 volt
voltage was used to power it. The microcontroller
would act as a serial to USB converter—thus,
allowing the serial messages to be sent through
WiFi, to the device server, to the ground.

Issues
Early on this design was dropped due to weight

issues. The plane we had planned on using was
not large enough to house all these components,
and the engine on this plane was not powerful
enough to provide lift for such a payload. From
here we decided to focus on reading flight data via
sensors on the plane.

2. Second Design
Our second design focused on both long-range

wireless communications and reading sensors.
For the wireless communication portion, we
would use a radio frequency serial data transfer
device. One end would transmit data and the other

Autonomous Stable Flight with a PID Controller
Stephen Wong and Jennifer Yu

would receive data. These two devices would
have to be switched depending on whether we
were logging data or flying autonomously. These
two devices were much smaller in size and weight
and suitable for our plane.

On the sensor side we purchased a 2-axis
accelerometer, a gyroscope and two barometric
pressure sensors. The accelerometer would
measure the x and y orientation of the plane, or the
pitch and the roll, respectively. The gyroscope
would be used to determine angular velocity in
both directions. Finally the barometric sensors
would be used to measure the altitude and airspeed
of the aircraft.

Issues
This design did not work out due to time and

skill constraints. We did not have the skill or time
to integrate the two barometric sensors into our
board. In terms of skill, a copper-clad board was
etched for the pressure sensors, but the leads were
too tiny to solder (See Figure 2). Because of this
difficulty and the fact that the deadline was
approaching we chose not to use them. Also, the
accelerometers and gyroscope did not verify
according to the outputs specified on their
datasheets.

Despite the main three sensors not verifying, we
decided to keep them to and look into the matter.
Our second design ultimately evolved into our
final design.

B. Final Design
Our final design takes many elements from our

second design but focuses on validation. The
three main components: sensors, RF serial
transmitter/receiver and manual override, all had
to be validated. This section will discuss the
issues involved with validating each of these
components.

1. Sensors and Voltage Source

To address the problem of sensor validation, we
verified the voltages coming from each sensor, the
voltages being read by the board and the reference
voltage for the analog to digital converter on our
microcontroller. The reference voltage was not
the 3.3 V that was expected of our board. We then

checked the source voltage to the board and
discovered that it was receiving 4.8 V instead of
the 5 V it was rated at.

By connecting a 5 V battery to the board and
sensors, we were able to keep the voltage above 5
V, but this still left us with a variable voltage
source. We finally settled on a LM7805[4] voltage
regulator and a 12 V battery. This way, as long as
the capacity of the battery remained between 9 V
and 12 V we would receive a constant supply of 5
V. The outputs of this voltage regulation were
used to drive the accelerometer, gyroscope, servo
motors and the RF serial transmitter (See Figure
3).

Another issue with the voltage source was the
noise created by the current draw of the servo
motors. To reduce this noise in the voltage source
we used a decoupling capacitor of 0.1 µF in
parallel with the 5 V regulator output. The
schematic for this part of our final design can be
seen in Figure 3.

2. RF Serial Transmitter/Receiver

The RF serial transmitter and receiver were easy
to validate in one direction, but not the other. In
sending data from the plane to the ground they
worked as described, but we were limited in our
ability to send data to the plane. The issue was
that a null modem cable was required to
communicate in the other direction. While we had
access to a male-to-male null modem cable, a
female-to-female null modem cable was not easily
obtainable. Also, placing a standard 3-foot null
modem cable on the plane would have added
unnecessary weight. Because of time limitations,
we were not able to send data back to the plane,
but we were able to log data.

3. Manual Override

One part of our robot that is essential, but has
not been discussed yet, is the manual override. In
the case that autonomous flight is not functioning
as desired we would like the pilot to be able to
override the controls on the plane at any time. To
implement this, we multiplexed the control for the
ailerons of the plane between the microcontroller

and the pilot inputs. Hardware-wise, this setup
was simple to implement and validate.

To validate, we simply switched the control bit
on the multiplexor and determined which device
was controlling the surfaces. Once the code was
in place, the hardware was functioning in every
trial of the override.

C. Figures

Figure 1: Keil MCB2300 evaluation board with voltage

regulator and RF serial transmitter.

Figure 2: Barometric pressure sensor board layout.

Figures 3: Schematic for the voltage regulator outputs.

III. SENSOR VALIDATION
To validate our sensors, we did a number of

rigorous tests. These tests involved driving with
the accelerometer to determine distance traveled,
tilting the accelerometer to 90º to determine a
value for gravity, turning the accelerometer 180º
in 5º segments to test angle accuracy and turning
the gyroscope to verify angular velocity.

There was a lot of noise coming from the ADC
conversion on the microcontroller. The board does
10-bit conversion time >= 2.44 microseconds[1],
but we decided to average 8 ADC conversions
before storing a value. So the actual conversion
rate became 8*2.44 microseconds. This along with
the hardware methods described earlier also
helped with noise.

We will now display and explain the results of
our validation.

A. Distance Test
This test involved driving for about 200 feet with

the accelerometer pointing in the direction of

travel. The following plots detail the results of the
x-accelerometer.

Plot 0: The x-acceleration reading, negative is forward.

The results are reasonable because the driver attempted a
constant acceleration.

Plot 1: The velocity was obtained after one integration.

Plot 2: The distance traveled was obtained after the

second integration. It can be seen that the accelerometer
was reasonably accurate in estimating the distance

traveled.

B. Gravity Test
This test involved holding the accelerometer at

90º and measuring the acceleration value, which
should be about 32 ft/s2. The following plots detail
the results.

Plots 3 & 4: Y-axis acceleration due to gravity. The RMS

values for these two tests were low.

Plots 5 & 6: X-axis acceleration due to gravity. The RMS
values for these two tests were also low, but not as accurate

compared to the y-axis.

C. Tilt Test
This test involved rotating the accelerometer

between -90º and 90º in 5º segments to validate
the tilt readings of the accelerometers. The
following plots detail the results.

Plot 7: X-axis accelerometer tilt test results.

Plot 8: Y-axis accelerometer tilt test results.

We also tried to see what tilt values our sensors
were getting in order to test the range of our
sensors. This test was subject to a lot of human
error because we cannot hold the sensor perfectly
at an angle. Near +/- 90 degrees range, the sensors
were not very sensitive.

D. Gyroscope Test
This test involved turning the gyroscope for a set

amount of time to observe that there were angular
velocity readings. This test was not very thorough
because in the end we did not have the time to
integrate the gyroscope into our design.

Plots 9 & 10: Gyroscope sensor output.

IV. PID CONTROLLER
To attain autonomous stable flight we decided to

use a PID controller. The PID Controller behaves
like so[5]:

control = ub + kp*proportionalerror +

ki*integralerror + kd*derivativeerror

integralerror is estimated with the trapezoid rule
derivativeerror is estimated with

(preverror – currenterror)/∆time

We tried to find PID constants for the ailerons
for stable flight in a straight line. We then used
regression[6] and repeated random sub-sampling
cross validation four times in order to find PID
values.

The pilot tried to fly in a straight line and made
corrections for when outside conditions made the
plane unstable. We recorded the control, the
period of the frequency the pilot sent the plane to
control the servos, and the tilt of the plane, which
we used to estimate the error (the tilt desired was 0
degrees). Here are our results from a test flight
with a pilot:

PID constants:

ub = 149.6539

kp = -0.1591

ki = -0.0157

kd = 0.0029

On average over the four cross validation runs,
the RMS values were:

TestRMS = 5.5672

TrainingRMS = 3.9796

(Please see the appendix for the code we used to
obtain these values.)

V. CONCLUSION

As stated earlier, this project has changed
significantly in scope from what was planned at
the onset. Due to time constraints and skill
limitations, we were not able to achieve all that we
had originally planned, nor were we able properly
gather training data for our classifier.

Much of our time was spent in designing our
hardware and validating our sensors—more time
than we had planned for. The sensors did verify
and our system was able to log data from a test
flight. We feel we were successful in creating a
stable system that could potentially allow for
autonomous stable flight.

If given the chance we would like to implement
Kalman filters[7] for our sensors and log data from
more training flights.

APPENDIX
Matlab code for regression:

%{
X=[prop_err int_err der_err]
}%
function [test_rms,train_rms,k] =

regression(y,X,testsize)

%split into train and test
ran = ceil(rand(testsize,1)*size(X,1));
test_y = y(ran);
test_X = X(ran,:);
train_y = [];
train_X = [];
for i =1:size(X,1)
 if(sum(i==ran) == 0)
 train_y = [train_y;y(i)];
 train_X = [train_X;X(i,:)];
 end
end

k =

(train_X'*train_X)\(train_X'*train_y);

y_guess = test_X*k;
%[test_y y_guess]
test_rms = sqrt(sum((y_guess-

test_y).^2/(testsize)));

y_guess = train_X*k;
%[train_y y_guess]
train_rms = sqrt(sum((y_guess-

train_y).^2/(size(X,1))));

function [test_rms,train_rms,k] =

cross_validation(y,X,testsize,times)

avg_test_rms =0;
avg_train_rms = 0;
avg_k = [];

for i=1:times
 [test_rms,train_rms,k] =

regression(y,X,testsize);
 avg_test_rms = [avg_test_rms

test_rms];
 avg_train_rms = [avg_train_rms

train_rms];
 avg_k = [avg_k k];
end
avg_k
test_rms = mean(avg_test_rms);
train_rms = mean(avg_train_rms);
k = mean(avg_k,2);

ACKNOWLEDGMENT
We would like to acknowledge Professor

Ashutosh Saxena and Mark Verheggen, for giving
us advice on the direction of our project, and
Matthew Lorhal for his time in piloting the plane
for our test flight. We would like to thank
National Instruments for donating the Keil
MCB2300 for our use. We would also like to
thank the CU Air project team and Cornell
University.

REFERENCES
[1] "LPC2378 User Manual."

http://www.keil.com/dd/docs/datashts/philips/lpc23xx_um.pdf
[2] "MCB 2300 Evaluation Board."

http://www.keil.com/mcb2300/mcb2370.asp
[3] "Silex SX-2000WG Device Server."

http://www.silexamerica.com/products/usb_device_connectivity/sx-
2000wg.html

[4] "LM7805 Datasheet."
http://www.datasheetcatalog.org/datasheet/fairchild/LM7805.pdf

[5] Saxena, Ashutosh. "Linear Systems, PID Control." Lecture, CS 4758
Robot Learning at Cornell University, Ithaca, NY, February 16, 2010.

[6] Saxena, Ashutosh. "Projects, Supervised Learning, Linear Regression,
Nearest neighbors." Lecture, CS 4758 Robot Learning at Cornell
University, Ithaca, NY, February 4, 2010.

[7] Saxena, Ashutosh. "Kalman Filters." Lecture, CS 4758 Robot
Learning at Cornell University, Ithaca, NY, March 30, 2010.

