
 
 

 

  

Abstract—This project aimed to create a stable flight system 
for a model airplane using a microcontroller, an accelerometer 
and a gyroscope.  The method of stable flight is a PID 
controller.  The hardware was designed to be light-weight and 
flight ready.  The sensors were tested using various validation 
methods.  The robot was then test flown to gather data to create 
a classifier for the PID constants. 

I. INTRODUCTION 

UAVs (unmanned aerial vehicles) are gaining 
traction in the use of research, transport and 
combat.  This project aimed to develop an UAV 
system for CU Air, the Cornell University 
Autonomous flight team.  We had initially 
planned on creating a system that could 
autonomously fly to set GPS coordinates, but 
due to time constraints, we significantly limited 
the scope of our project.  

Thus, this project focused on the stable flight 
aspect of autonomous flight using a PID 
(proportional, integral and derivative) controller.  
We paired this system with a 6-foot wingspan 
hobby airplane for testing purposes. 
 

 
Figure 0: Plane robot before a flight. 

II. HARDWARE DESIGN 
A large portion of our robot was based on 

hardware design.  Because the system we used 
had to be light weight and sturdy, we went through 

several hardware designs before settling on our 
final design.  It is worth noting that all the designs 
centered around the LPC2378 microcontroller[1] 
by NXP which was mounted to an MCB2300[2] 
evaluation board from Keil (See Figure 1).  In this 
section we will discuss our initial designs, why 
they were not used and the final design. 

A. Initial Design 
Basically, two designs were initially considered 

and partially tested before they were deemed unfit 
for our purposes.  These two designs will be 
referred to as the first design and the second 
design. 

1. First Design 
Our first design involved using the USB port on 

the evaluation board to communicate with the 
ground via a USB to WiFi device server[3].  This 
device server converts USB 2.0 signals into 
802.11b or g WiFi.  From there a router on the 
ground relays the signal to a computer.  To allow 
the device server to be used in the air, it was 
modified with a high gain antenna and a 5 volt 
voltage was used to power it.  The microcontroller 
would act as a serial to USB converter—thus, 
allowing the serial messages to be sent through 
WiFi, to the device server, to the ground. 

Issues 
Early on this design was dropped due to weight 

issues.  The plane we had planned on using was 
not large enough to house all these components, 
and the engine on this plane was not powerful 
enough to provide lift for such a payload.  From 
here we decided to focus on reading flight data via 
sensors on the plane. 

2. Second Design 
Our second design focused on both long-range 

wireless communications and reading sensors.  
For the wireless communication portion, we 
would use a radio frequency serial data transfer 
device.  One end would transmit data and the other 
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would receive data.  These two devices would 
have to be switched depending on whether we 
were logging data or flying autonomously.  These 
two devices were much smaller in size and weight 
and suitable for our plane. 

On the sensor side we purchased a 2-axis 
accelerometer, a gyroscope and two barometric 
pressure sensors.  The accelerometer would 
measure the x and y orientation of the plane, or the 
pitch and the roll, respectively.  The gyroscope 
would be used to determine angular velocity in 
both directions.  Finally the barometric sensors 
would be used to measure the altitude and airspeed 
of the aircraft. 

Issues 
This design did not work out due to time and 

skill constraints.  We did not have the skill or time 
to integrate the two barometric sensors into our 
board.  In terms of skill, a copper-clad board was 
etched for the pressure sensors, but the leads were 
too tiny to solder (See Figure 2).  Because of this 
difficulty and the fact that the deadline was 
approaching we chose not to use them.  Also, the 
accelerometers and gyroscope did not verify 
according to the outputs specified on their 
datasheets. 

Despite the main three sensors not verifying, we 
decided to keep them to and look into the matter.  
Our second design ultimately evolved into our 
final design. 

B. Final Design 
Our final design takes many elements from our 

second design but focuses on validation.  The 
three main components:  sensors, RF serial 
transmitter/receiver and manual override, all had 
to be validated.  This section will discuss the 
issues involved with validating each of these 
components. 

1. Sensors and Voltage Source 

To address the problem of sensor validation, we 
verified the voltages coming from each sensor, the 
voltages being read by the board and the reference 
voltage for the analog to digital converter on our 
microcontroller.  The reference voltage was not 
the 3.3 V that was expected of our board.  We then 

checked the source voltage to the board and 
discovered that it was receiving 4.8 V instead of 
the 5 V it was rated at. 

By connecting a 5 V battery to the board and 
sensors, we were able to keep the voltage above 5 
V, but this still left us with a variable voltage 
source.  We finally settled on a LM7805[4] voltage 
regulator and a 12 V battery.  This way, as long as 
the capacity of the battery remained between 9 V 
and 12 V we would receive a constant supply of 5 
V.  The outputs of this voltage regulation were 
used to drive the accelerometer, gyroscope, servo 
motors and the RF serial transmitter (See Figure 
3). 

Another issue with the voltage source was the 
noise created by the current draw of the servo 
motors.  To reduce this noise in the voltage source 
we used a decoupling capacitor of 0.1 µF in 
parallel with the 5 V regulator output.  The 
schematic for this part of our final design can be 
seen in Figure 3. 

2. RF Serial Transmitter/Receiver 

The RF serial transmitter and receiver were easy 
to validate in one direction, but not the other.  In 
sending data from the plane to the ground they 
worked as described, but we were limited in our 
ability to send data to the plane.  The issue was 
that a null modem cable was required to 
communicate in the other direction.  While we had 
access to a male-to-male null modem cable, a 
female-to-female null modem cable was not easily 
obtainable.  Also, placing a standard 3-foot null 
modem cable on the plane would have added 
unnecessary weight.  Because of time limitations, 
we were not able to send data back to the plane, 
but we were able to log data. 

3. Manual Override 

One part of our robot that is essential, but has 
not been discussed yet, is the manual override.  In 
the case that autonomous flight is not functioning 
as desired we would like the pilot to be able to 
override the controls on the plane at any time.  To 
implement this, we multiplexed the control for the 
ailerons of the plane between the microcontroller 



 
 

 

and the pilot inputs.  Hardware-wise, this setup 
was simple to implement and validate. 

To validate, we simply switched the control bit 
on the multiplexor and determined which device 
was controlling the surfaces.  Once the code was 
in place, the hardware was functioning in every 
trial of the override. 

C. Figures 
 

 
Figure 1: Keil MCB2300 evaluation board with voltage 

regulator and RF serial transmitter.  
 

 
Figure 2: Barometric pressure sensor board layout. 

 
Figures 3: Schematic for the voltage regulator outputs. 
 

III. SENSOR VALIDATION 
To validate our sensors, we did a number of 

rigorous tests.  These tests involved driving with 
the accelerometer to determine distance traveled, 
tilting the accelerometer to 90º to determine a 
value for gravity, turning the accelerometer 180º 
in 5º segments to test angle accuracy and turning 
the gyroscope to verify angular velocity. 

There was a lot of noise coming from the ADC 
conversion on the microcontroller. The board does 
10-bit conversion time >= 2.44 microseconds[1], 
but we decided to average 8 ADC conversions 
before storing a value. So the actual conversion 
rate became 8*2.44 microseconds. This along with 
the hardware methods described earlier also 
helped with noise. 

We will now display and explain the results of 
our validation. 

 
A. Distance Test 
This test involved driving for about 200 feet with 

the accelerometer pointing in the direction of 



 
 

 

travel.  The following plots detail the results of the 
x-accelerometer. 

 
Plot 0: The x-acceleration reading, negative is forward.  

The results are reasonable because the driver attempted a 
constant acceleration. 

Plot 1: The velocity was obtained after one integration. 
 

 
Plot 2: The distance traveled was obtained after the 

second integration.  It can be seen that the accelerometer 
was reasonably accurate in estimating the distance 

traveled. 

B. Gravity Test 
This test involved holding the accelerometer at 

90º and measuring the acceleration value, which 
should be about 32 ft/s2. The following plots detail 
the results.  

 
Plots 3 & 4: Y-axis acceleration due to gravity.  The RMS 

values for these two tests were low. 



 
 

 

 
 

Plots 5 & 6: X-axis acceleration due to gravity.  The RMS 
values for these two tests were also low, but not as accurate 

compared to the y-axis. 

C. Tilt Test 
This test involved rotating the accelerometer 

between -90º and 90º in 5º segments to validate 
the tilt readings of the accelerometers.  The 
following plots detail the results.  

 
Plot 7: X-axis accelerometer tilt test results. 

 
Plot 8: Y-axis accelerometer tilt test results. 

We also tried to see what tilt values our sensors 
were getting in order to test the range of our 
sensors.  This test was subject to a lot of human 
error because we cannot hold the sensor perfectly 
at an angle.  Near +/- 90 degrees range, the sensors 
were not very sensitive. 

D. Gyroscope Test 
This test involved turning the gyroscope for a set 

amount of time to observe that there were angular 
velocity readings.  This test was not very thorough 
because in the end we did not have the time to 
integrate the gyroscope into our design. 



 
 

 

 

 
Plots 9 & 10: Gyroscope sensor output. 

 

IV. PID CONTROLLER 
To attain autonomous stable flight we decided to 

use a PID controller.  The PID Controller behaves 
like so[5]: 

 
control = ub + kp*proportionalerror + 

ki*integralerror + kd*derivativeerror 
 

integralerror is estimated with the trapezoid rule 
derivativeerror is estimated with 

(preverror – currenterror)/∆time 
 

We tried to find PID constants for the ailerons 
for stable flight in a straight line. We then used 
regression[6] and repeated random sub-sampling 
cross validation four times in order to find PID 
values.  

The pilot tried to fly in a straight line and made 
corrections for when outside conditions made the 
plane unstable. We recorded the control, the 
period of the frequency the pilot sent the plane to 
control the servos, and the tilt of the plane, which 
we used to estimate the error (the tilt desired was 0 
degrees). Here are our results from a test flight 
with a pilot: 

PID constants: 

ub = 149.6539 

kp =  -0.1591 

ki =   -0.0157 

kd =    0.0029 

On average over the four cross validation runs, 
the RMS values were: 

TestRMS =    5.5672 

TrainingRMS =    3.9796 

(Please see the appendix for the code we used to 
obtain these values.) 

V. CONCLUSION 

As stated earlier, this project has changed 
significantly in scope from what was planned at 
the onset.  Due to time constraints and skill 
limitations, we were not able to achieve all that we 
had originally planned, nor were we able properly 
gather training data for our classifier.  

Much of our time was spent in designing our 
hardware and validating our sensors—more time 
than we had planned for.  The sensors did verify 
and our system was able to log data from a test 
flight. We feel we were successful in creating a 
stable system that could potentially allow for 
autonomous stable flight. 

If given the chance we would like to implement 
Kalman filters[7] for our sensors and log data from 
more training flights. 



 
 

 

APPENDIX 
Matlab code for regression: 
 
%{ 
X=[prop_err int_err der_err] 
}% 
function [test_rms,train_rms,k] = 

regression(y,X,testsize) 
 
%split into train and test 
ran = ceil(rand(testsize,1)*size(X,1)); 
test_y = y(ran); 
test_X = X(ran,:); 
train_y = []; 
train_X = []; 
for i =1:size(X,1) 
    if(sum(i==ran) == 0) 
        train_y = [train_y;y(i)]; 
        train_X = [train_X;X(i,:)]; 
    end 
end 
  
k = 

(train_X'*train_X)\(train_X'*train_y); 
 
y_guess = test_X*k; 
%[test_y y_guess] 
test_rms = sqrt(sum((y_guess-

test_y).^2/(testsize))); 
 
y_guess = train_X*k; 
%[train_y y_guess] 
train_rms = sqrt(sum((y_guess-

train_y).^2/(size(X,1)))); 
 
function [test_rms,train_rms,k] = 

cross_validation(y,X,testsize,times) 
 
avg_test_rms =0; 
avg_train_rms = 0; 
avg_k = []; 
 
for i=1:times 
    [test_rms,train_rms,k] = 

regression(y,X,testsize); 
    avg_test_rms = [avg_test_rms 

test_rms]; 
    avg_train_rms = [avg_train_rms 

train_rms]; 
    avg_k = [avg_k k]; 
end 
avg_k 
test_rms = mean(avg_test_rms); 
train_rms = mean(avg_train_rms); 
k = mean(avg_k,2); 
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